
Using Incremental Consistency Management for
Conformance Checking in Feature-Oriented

Model-Driven Engineering
Roberto E. Lopez-Herrejon

Alexander Egyed
Institute for Systems Engineering and Automation

Johannes Kepler University Linz, Austria
{roberto.lopez, alexander.egyed}@jku.at

Salvador Trujillo
Josune de Sosa

IKERLAN Research Laboratory
Mondragon, Spain

{STrujillo,jdesosa}@ikerlan.es

Maider Azanza
University of the Basque Country

San Sebastian, Spain
maider.azanza@ehu.es

Abstract—Feature-Oriented Model-Driven Engineering
(FOMDE) is an approach that lies at the intersection of
two complementary paradigms for software construction,
Model Driven Engineering (MDE) and Software Product Line
Engineering (SPLE). MDE aims at raising the abstraction level of
application specification and automating the realization of these
abstractions down to the platform level, while SPLE focuses on
the synthesis of applications using a pre-planned set of assets. In
Feature-Orientation, features are modules that contain all assets
needed for their realization. The products of a Software Product
Line (SPL) are synthesized by composing different combinations
of features. When constructed following MDE, features also
contain metamodels, models and model transformations. In this
context, it is crucial to check that models, metamodels, and their
compositions conform to (i.e. meet all the constraints of) their
metamodels and meta-metamodels. In this problem statement
paper we describe how to use incremental consistency checking
to check this conformance. We sketch some of the potential
benefits of this approach and highlight the open questions our
work raised.

Index Terms—incremental consistency management; Model-
Driven Engineering Software Product Lines; Feature Orienta-
tion; conformance checking

I. INTRODUCTION

Feature-Oriented Model-Driven Engineering (FOMDE) is
an approach that lies at the intersection of two complementary
paradigms for software construction, Model Driven Engi-
neering (MDE) [1] and Software Product Line Engineering
(SPLE) [2]–[4]. MDE aims at raising the abstraction level
of application specification and automating the realization of
these abstractions down to the platform level with a set of
model to model and model to text transformations. On the
other hand, SPLE focuses on the synthesis of applications
using a pre-planned set of assets.

Feature-Orientation is an specific approach for constructing
Software Product Lines (SPL) [5], [6]. In this approach,
features are increments in program functionality [7]. Features
are implemented in modules that contain all assets, that is,
artifacts that they require for their realization. For example,
a feature may be implemented with UML diagrams, scripts,
XML files, configuration files, etc. The members of the SPL

are synthesized by composing different combinations of fea-
tures. Tools that implement this approach provide mechanisms
to compose these distinct artifact types in a uniform way.
For the combination of Feature-Orientation and MDE, the
features typically contain multiple models, metamodels and
transformations [8].

In this context, it is crucial to check that models, meta-
models, and their compositions conform to (i.e. meet all
the constraints of) their metamodels and meta-metamodels
respectively. The driving motivation of our problem statement
paper is describing an approach to check this conformance.

Consistency checking derives from work on Multi-View
Modeling (MVM) [9]. MVM advocates that multiple, different
and yet related models are required to represent the perspec-
tives and information needs of diverse system stakeholders
throughout the development process [10], [11]. The elements
in these distinct views have semantic relationships that must
be expressed and maintained. Consistency rules capture and
serve to enforce these semantic relationships. An example of
MVM is UML where the different types of diagrams can
represent the distinct views of a system [12]. A classical
example of consistency rule in UML, between sequence and
class diagrams, is that if a sequence diagram has a message
m whose target is an object of class C, the class diagram of
class C must contain method m.

Our work raises consistency checking beyond the traditional
MVM perspective. We show how incremental consistency
checking, a special form of consistency checking, can be
used to check conformance as described above. The key is
treating both model and metamodel composition similarly and
generating conformance rules based on the well-formedness
rules defined at the meta-metamodel. We sketch some of the
potential benefits of this approach and highlight the open
questions our work raised.

II. BACKGROUND

Our work brings together two, until now, disjoint research
areas. In this section we present the basic background of both.



Fig. 1. Scenarios where model conformance is used

A. Feature-Oriented Model-Driven Engineering

Feature Oriented Model Driven Engineering (FOMDE) is a
blend of Feature Oriented Programming (FOP) [6] and MDE
that shows how products in an SPL can be synthesized in an
MDE way by composing features to create models, and then
transforming these models into executables [8]. FOP and MDE
are complementary paradigms [13] and several case studies
show the advantages of combining them [14], [15]. However,
in these cases, features were implemented using XML and they
were composed using XAK [16], that is, feature composition
was purely text-based. This work laid out the foundations for
our current research on FOMDE. The lack of conformance
checking in FOMDE captured our interest and motivated this
research.

Recent work on Domain Specific Languages (DSL) has
raised the need of reusing metamodels as features of a
SPL [17], [18]. The selection of different features produces
thus different DSLs that are tailored to particular application
scenarios. For this scenario to work properly, it is crucial to
check that the composition of metamodels conforms to the
meta-metamodel used and their corresponding models are kept
conformant when their metamodels change.

In summary, in the context of FOMDE there are three
main scenarios where checking conformance is important: i)
model conformance to metamodel, ii) conformance during
model composition, and iii) conformance during metamodel
composition. These three scenarios are depicted in Figure 1.
In this figure, m stands for model and mm for metamodel, and
the dot indicates composition.

B. Incremental Consistency Checking

There exists an extensive body of work in consistency
checking. Recent literature surveys identified over 30 ap-
proaches which rely on different formalisms to represent
and validate consistency [19], [20]. They typically have in
common that consistency is expressed via rules. A recent trend
in consistency checking is work on incremental approaches
which react to changes and evaluate only those rules on
those model elements that are affected and can potentially
cause an inconsistency. An advantage of these approaches is
reduced verification time over systems that follow a batch
strategy. A leading tool among the incremental approaches is
UML/Analyzer [21], [22]. In this tool, when a model change

Fig. 2. Pictorial view of Incremental Consistency Checking

occurs, it automatically, correctly and efficiently identifies
what consistency rules to evaluate and on what model ele-
ments. If inconsistencies are detected, they are highlighted for
the user to take an appropriate corrective action.

Incremental consistency in UML/Analyzer works as fol-
lows. First the tool loads the model to analyze. Then it
identifies the places where each consistency rule defined can
be applied. A consistency rule instance is an application of a
consistency rule, and its scope is the set of model elements
that are part of the instance.

It is common that a model element is part of the scopes of
multiple and distinct consistency rules instances. An example
of this scenario is shown in Figure 2. This figure shows
three consistency rules cm1 , cm2 , and cm3. For notational
convention we denote these constraint rules with a suffix m,
that stands for metamodel because these rules are defined in
terms of metamodel elements, and a number subscript. We
use a second subscript to denote instances of the constraint
rules. Figure 2 shows instances of these rules such as cm1,1

and cm2,1. In this figure, model elements m7 and m9 belong
to two distinct scopes.

The work of UML/Analyzer has been mostly used in the
context of UML models; however, its underlying principles
are applicable to any types of models and constraints [21],
[22]. In the next section we show how these principles are
adapted for checking model and metamodel conformance in
the context of FOMDE.

III. CONFORMANCE CHECKING

In this section we draw a connection between incremental
consistency checking and conformance checking for the three
scenarios described above and sketch the potential benefits of
this connection.

A. Conformance of Model to Metamodel

Let us illustrate the key ideas of UML/Analyzer with an
example. Consider a hypothetical SPL of questionnaires. A
typical questionnaire has a title and a brief introduction. The
questions are grouped in blocks that have a header and a
description. A block needs to have at least one question, and
for each question requires two to four answer options. Figure 3
presents the metamodel for the features of this product line as
an Ecore metamodel (a subset of UML class diagram).



Fig. 3. Questionnaire metamodel

In FOMDD a feature contains models that are instances of
a metamodel. Feature F, depicted in Figure 4, is an example
in our questionnaire product line. For sake of simplicity we
use an abbreviated object model to denote instantiation of
the metamodel and annotate the relations amongst the objects
using the aggregation names of the metamodel (formedBy,
asks, and offers). This feature contains a block B1 with
two questions (A and B), each with two answer options.

Fig. 4. Feature F, model instance of Questionnaire metamodel

The key for leveraging incremental consistency checking
is using conformance rules as the consistency rules to check
against. In other words, conformance rules and consistency
rules have in common that they evaluate a portion of a model
and return a boolean result, true if the rule holds or false
otherwise. Consistency checkers can thus be used readily to
check conformance rules. In our Questionnaire one of
such conformance rules can be defined as follows 1:

Conformance rule for aggregation. Let A and B be two
classes. If an aggregation between A and B exists, an object
of type A can aggregate n objects of type B where lower ≤
n ≤ upper.

Now we describe how to check conformance of the model
in Figure 4 against this rule. In this figure, there are four
instances of the conformance aggregation rule. The first in-
stance contains Question A and its two Option answers
from offers aggregation. Similarly, the second instance

1To be more precise, the filled rhomb in this association denotes contain-
ment such that an object of type B can only be associated with one object of
type A. For simplicity, we do not utilize this part of the standard semantics
of this symbol as it is not relevant for our current exposition.

Fig. 5. Feature F with scopes

contains Question B and its two answers Option. The
third instance contains a Block and the two questions, from
asks aggregation. Finally, the fourth instance contains a
Questionnaire object and one Block, from formedBy
aggregation. In this model, the number of objects aggregated
falls within the lower and upper limits of the corresponding
rule instances, thus it conforms to its metamodel, according
to this rule.

Notice however that this general conformance rule can be
fine-tuned according to the types of the classes participating in
the aggregation and their cardinality. We call this adaptation
process constraint rule generation. For our Questionnaire
metamodel the generated conformance rules are:

∙ cm1 = Aggregation rule with A is Question and B is
Option

∙ cm2 = Aggregation rule with A is Block and B is
Question

∙ cm3 = Aggregation rule with A is Questionnaire and
B is Block

The four instances of these generated rules are depicted in
Figure 5. Thus, every feature will have an associated set of
conformance rule instances with their corresponding scopes.
In this figure the scopes are 2:

∙ cm1,1 = {A, O1, O2}
∙ cm1,2 = {B, O3, O4}
∙ cm2,1 = {B1, A, B}
∙ cm3,1 = {Survey, B1}
Our conformance rule for aggregation is a simplified exam-

ple of the well-formedness rules that are commonly defined
for meta-metamodels such as Ecore [23] and MOF [24].
Therefore, to check conformance of a model to a metamodel it
is required to define all well-formedness rules from which con-
formance rules can be generated for a particular metamodel.

In addition to the well-formedness rules, it is possible to
include constraints that are specific to a domain. An example
in our domain questionnaire would be requiring that the
maximum number of questions per questionnaire be 40 ques-
tions irrespective of how they are grouped into blocks. These

2For notational simplicity, we equate the scopes with the rule instances.



Fig. 6. Feature G, instance of Questionnaire metamodel

domain-specific conformance rules are treated identically to
those generated from well-formedness rules.

In summary, the conformance of a model to a metamodel
can be checked using incremental consistency checking where
the constraints rules are: i) rules generated from the well-
formedness rules of the meta-metamodel that apply in a
metamodel, ii) domain-specific constraints defined for the
metamodel.

B. Conformance during Model Composition

Let us describe now how model conformance is checked
during model composition. Consider the feature G in Figure 6.
This feature also has a block B1 with Question B with
three new Option answers, and another Question C with
its two Option answers. It is clear from our description
above that this feature conforms to its metamodel as all
the conformance rules instances are valid. Regardless of the
technology used [25], model composition can be seen as
applying a successive set of changes to an existing model.
In our example, the composition of this second feature G to
feature F in Figure 4 adds three new options to question B,
and a new question C with its options.

The first step prior to start composition is cloning copies of
the features involved and their scopes. On these copies will
composition and conformance checking be performed. This
step is necessary because features can be used to compose
different products. In FOMDE, features are composed hier-
archically starting from the root element. Elements that have
the same name and type at the same hierarchical level are
composed together, elements that do not have a corresponding
matching element are copied along hierarchically. In our
example, elements Survey, B1 and B from feature G have
a matching element in feature F thus they will compose
hierarchically. The remaining elements in feature G are copied
along at their corresponding level.

As composition proceeds, a rule instance is re-evaluated
if a change in its scope elements is detected. Additionally,
if model elements are deleted or new ones are added, new
rule instances can be removed or created. The result of
composing our two features is depicted in Figure 7 with their
corresponding consistency rule scopes. For visual simplicity,

Fig. 7. Composed feature with scopes

the types Option of the objects of question B are omitted in
the figure.

In our example, the addition of options O5, O6, and
O7, causes a re-evaluation of rule instance cm1,2. Recall
that rule cm1 checks the aggregation between Option and
Question, such that each question has from two to four
possible answers. Therefore, this instance re-evaluation detects
a violation of this rule because Question B now has five
available options. It is important to notice that this violation
is signaled as soon as option O7 is added. This immediate
notification allows the developer to take any corrective actions
deemed necessary. A possibility is backtracking composition
to trace the source of the non-conformance.

Continuing with the composition, the addition of the new
Question C creates a new instance cm1,3 whose evaluation
meets the conformance rule. Because there was a change in the
scope of cm2,1 resulting from the addition of a new question,
this instance is also re-evaluated. Recall that rule cm2 checks
aggregations between Block and Question such that a
block has at least one question. Thus the re-evaluation of cm2,1

does not detect any inconsistencies. In conclusion, the only
non-conformance to the metamodel of the composed features
is because five options are available for Question B.

Summarizing, conformance during model composition fol-
lows the same process described in the previous section. The
insight here is considering the composition of a feature with
another as applying a set of finer-grain model changes to
another model.

C. Conformance during Metamodel Composition

The same principles of incremental consistency checking are
applicable for composing metamodels. To illustrate that, first
consider Figure 8 that shows a metamodel feature that has an
aggregation for Block to itself, and a navigable association
from Block to a new class Scale. We will compose this
metamodel with Base metamodel in Figure 3.

Let us explain how incremental consistency works when
metamodels are composed. The first consideration to keep
in mind is that a metamodel is in itself an instance of a
meta-metamodel. Thus a metamodel can be viewed as a set
of instances of meta-metaclasses. For example, using Ecore



Fig. 8. Scale metamodel and feature

[23], Figure 9 shows a simplified view of the question-
naire metamodel in Figure 3. A package (meta-metaclass
EPackage) aggregates zero or more classes (meta-metaclass
EClass) in an aggregation called eClassifiers. In
turn, each EClass instance aggregates its attributes (meta-
metaclass EAttribute) and its references to other classes
(meta-metaclass EReference). Note that these references
are the aggregations between the metaclasses in Figure 3.
For example, the EReference formedBy in EClass
Questionnaire corresponds to the formedBy aggrega-
tion between metaclasses Questionnaire and Block3.

Using this perspective of considering metaclasses as in-
stances (model elements) of the meta-metamodel, we can
apply exactly the same process we followed for checking con-
formance with model composition. First, clone copies of the
metamodels and their scopes are made to apply composition
and conformance checking on them.

Two conformance rules that check aggregation, but now at
the metamodel level, can be generated. We use suffix mm to
denote these rules as they are now defined in terms of meta-
metamodel elements as follows:

∙ cmm1 = Aggregation rule with A is EPackage and B is
EClass

∙ cmm2 = Aggregation rule with A is EClass and B is
EStructuralFeature

3For simplicity the endType of the EReference is not depicted. For instance
in the case of formedBy this type is metaclass Block.

Fig. 9. Simplified metamodel view in terms of metaclasses

Fig. 10. Simplified metamodel view of Scale

In Ecore, EStructuralFeature is an interface imple-
mented by both EClass and EReference. Furthermore, we
can now identify the following instances of these rules and
their corresponding scopes in Questionnaire metamodel:

∙ cmm1,1 = {Base, Questionnaire, Block,
Question, Option}

∙ cmm2,1 = { Questionnaire, title,
introduction, formedBy }

∙ cmm2,2 = {Block, header, description,
asks }

∙ cmm2,3 = {Question, test, offers}
∙ cmm2,4 = {Option, id, answer}
Using this same perspective, the metaclasses view of Scale

metamodel is depicted in Figure 10. Metamodel composition,
performed along the lines illustrated in previous section,
modifies the scopes of the rule instances cmm1,1 and cmm2,2

(changes are underlined) and creates a new rule instance
cmm2,5 as follows:

∙ cmm1,1 = {Base, Questionnaire, Block,
Question, Option, Scale }

∙ cmm2,2 = {Block, header, description,
asks, contains, definedUsing }

∙ cmm2,5 = {Scale, name, author}
Consequently instances cmm1,1 and cmm2,2 need to be re-

evaluated, and instance cmm2,5 evaluated for a first time.
In this case these instances do not cause any conformance
violations as they meet the constraint given that a package
can have zero or more classes, and a class can have zero or
more attributes and references. In other words, the composed
metamodel conforms to the meta-metamodel.

Despite of not causing any inconsistency, the changes in
the metamodel can still trigger the generation of new rule in-
stances as new metaclasses can be added. In this example, the
addition of EReference contains causes the generation
of a new instance cm4 of the aggregation rule with A is Block
and B is Block. This generation in turn triggers a search for
instances of cm4 at the model level. In our model composition
examples we have no such case, so the checking process stops
there.

In summary, checking conformance of metamodel composi-
tion follows the same process as the case of model composition



but with the additional step that changes at the metamodel
level can trigger the generation of new rule instances or the
re-evaluation of existing instances at the model level.

D. Potential benefits
Based in our experience, early conformance checking of

features by means of incremental consistency checking can
offer three major advantages when compared to that batch
checking:

∙ Consistency of modeling artifacts throughout the entire
development process, including their correctness and
well-formedness [26].

∙ Earlier identification of inconsistencies.
∙ Traceability of the origin of the inconsistency.

IV. RELATED WORK

There is extensive research on models, model composition
and SPL. In this section we shortly present those pieces of
research that most closely relate to our work.

Safe composition is the guarantee that programs composed
according to the product line constraints are type safe [27], i.e.
they do not have undefined elements to structural elements
such as classes, methods, and fields. Contrary to this paper
that focuses on checking conformance of a given product, safe
composition focuses on validating properties for all members
of a product line. Our recent work has shown how to use
UML consistency rules as the constraints to validate safe
composition in UML-based SPL [28].

There are several approaches and technologies to perform
model composition [25]. Only a few are specific to SPL. Tru-
jillo et. al motivate the need of realizing variability not only at
model level but also at metamodels and model transformations
[18]. FeatureHouse uses model superimposition to compose
basic UML models at the XMI level [29], and MATA uses
graph transformations as composition mechanisms for UML
models [30]. However, in these two approaches it is unclear
how (if at all) conformance checking is performed.

Another approach implements feature composition uses
Maude, a high-performance logical framework [31]. In this
work, feature composition is expressed in terms of rewrite
rules. Conformance checking becomes reduction according to
the rewrite rules, which in our context effectively are our
conformance rules. In other words, if a composed model
reduces to a canonical form (one that cannot be further
reduced), the model conforms, otherwise an error can be
detected. We have not investigated how this approach could
be tailored to represent arbitrary domain-specific constraints.
This issue is part of our future work.

V. OPEN QUESTIONS

In this section we sketch some of the open questions we
identified in our work, as such, they are venues for our future
work.

Living with inconsistencies. In this paper we assumed that
the composition of models and metamodels should at any-
time conform respectively to their metamodels and metameta-
models. However, there may be intermediate stages during

composition at which this assumption may not hold, but still
yield a conforming result at the end. For example, if the
composition paradigm used were non-monotonic (permitting
to remove model elements) and our features F and G were
composed with a third feature that removed one of the options
of Question B, the result would be a conforming model
in despite of the partial composition of F and G being
non conformant. This type of inconsistency is tolerable as
composition may potentially be able to ”fix” it. There may be
also cases where an inconsistency cannot be remedied. A case
from our Questionnaire metamodel would be a feature
that contains two Option objects without any associations.
This type of inconsistency is intolerable because for this
feature to be composable the Question, the Block, and the
Questionnaire the options belong to must be also defined.
Thus, living with inconsistencies [32], [33] (tolerating some
of them) also plays an important role in our work. Character-
izing, identifying and managing both types of inconsistencies
may have an impact on how we define and implement our
conformance rules.

Impact of a change. We expect changes not to be isolated.
Constraint instances may have complex relationships amongst
them in such a way that a single change may trigger a cascade
of inconsistencies for which subsequent fixes may be required.
Efficiently determining the impact of a change and computing
an order in which to fix the triggered inconsistencies may be
a crucial point for our approach to adequately scale.

Consistency at other development stages. Conceivably,
there are other scenarios where changes can also occur and
thus conformance checking may become necessary. An exam-
ple is when features, either models or metamodels, themselves
change as consequence of changes in the requirements. These
changes may themselves trigger conformance checks of the
modified models and metamodels. Another possible scenario
is when concrete products evolve and such changes must be
propagated back into the SPL architecture and its features.
In summary, we plan to study all other possible scenarios
where conformance checking may be needed and evaluate the
applicability of incremental consistency to them.

Consistencies between feature artifacts. Our paper fo-
cused on checking conformance within an artifact type, namely
models or metamodels. However, it is common that a feature
involves more than one artifact type, such as code, models,
XML files, script files, etc. Thus it is important to keep
consistency amongst the elements of a feature. Our recent
work has started to address this issue with UML artifacts [28].

Evolution direction. In our work, when changes occur at
the metamodel level, other changes can be triggered down at
the model level. However, it is conceivable that changes may
flow in the opposite direction. This means that a change com-
mitted at the model level imposes changes at the metamodel
level which in turn may trigger other changes at other instances
of the metamodel.

Safe composition. The work presented in this paper fo-
cuses on checking the conformance of one concrete product.
The goal of safe composition is the verification that certain



constraints are met in all the possible configurations (allow-
able combinations of features) of a product line. However,
because SAT solvers are used for this validation, there may
be scalability issues as the size of feature models, the types of
constraints, and number artifact types increase. Knowing those
potential limitations could help provide guidance on how to
extend safe composition to address the above mentioned open
questions.

Consistency between variability space and solution
space. This goes a step beyond safe composition by not only
detecting violation of the variability at the implementation
level but also in attempting to keep consistent variability
defined in a feature model with its realization across multiple
artifacts. We believe that the intensive ongoing research in
formal analysis of feature models can provide a foundation to
address this question [34]–[36].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we drew a connection between FOMDE and
incremental consistency checking. A crucial need in FOMDE
is checking conformance in different scenarios: model to
metamodel, during model composition, and during metamodel
composition. We showed that the underlying principles of
incremental consistency checking are applicable for checking
conformance in these three scenarios. The key is using as con-
sistency rules the conformance rules that are generated from
meta-metamodel well-formedness specifications or constraints
that are domain-specific.

As a first step, we plan to develop a metamodel-independent
framework to facilitate the specification of constraint rules and
their subsequent generation. We will use this framework to
evaluate our approach in industry-motivated cases studies and
address the identified open questions.

ACKNOWLEDGMENT

We thank Laura Vozmediano for her help with the ques-
tionnaires domain. This research is partially sponsored by the
Austrian FWF under agreement P21321-N15. This work is co-
supported by the Spanish Ministry of Science and Innovation,
under contracts TIN2008-06507-C02-01 and TIN2008-06507-
C02-02.

REFERENCES

[1] J. Bézivin, “On the unification power of models,” Software and System
Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[2] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[3] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[4] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[5] D. S. Batory, R. E. Lopez-Herrejon, and J.-P. Martin, “Generating
product-lines of product-families,” in ASE. IEEE Computer Society,
2002, pp. 81–92.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement,” IEEE TSE, vol. 30, no. 6, 2004.

[7] P. Zave, “Faq sheet on feature interaction,”
http://www.research.att.com/ pamela/faq.html.

[8] S. Trujillo, D. Batory, and O. Diaz, “Feature Oriented Model Driven
Development: A Case Study for Portlets,” in ICSE, 2007.

[9] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,
“Viewpoints: A framework for integrating multiple perspectives in
system development,” International Journal of Software Engineering
and Knowledge Engineering, vol. 2, no. 1, pp. 31–57, 1992.

[10] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency handling in multperspective specifications,” IEEE Trans.
Software Eng., vol. 20, no. 8, pp. 569–578, 1994.

[11] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for expressing
the relationships between multiple views in requirements specification,”
IEEE Trans. Software Eng., vol. 20, no. 10, pp. 760–773, 1994.

[12] “Unified Modeling Language (UML),” 2008, http://www.uml.org.
[13] D. S. Batory, M. Azanza, and J. Saraiva, “The objects and arrows of

computational design,” in MoDELS, ser. Lecture Notes in Computer
Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter,
Eds., vol. 5301. Springer, 2008, pp. 1–20.

[14] G. Freeman, D. S. Batory, and R. G. Lavender, “Lifting transformational
models of product lines: A case study,” in ICMT, ser. Lecture Notes in
Computer Science, A. Vallecillo, J. Gray, and A. Pierantonio, Eds., vol.
5063. Springer, 2008, pp. 16–30.

[15] E. Uzuncaova, D. Garcia, S. Khurshid, and D. S. Batory, “A
specification-based approach to testing software product lines,” in
ESEC/SIGSOFT FSE, I. Crnkovic and A. Bertolino, Eds. ACM, 2007,
pp. 525–528.

[16] F. I. Anfurrutia, O. Diaz, and S. Trujillo, “On the Refinement of XML,”
in International Conference on Web Engineering ICWE, 2007.

[17] J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C. Schmidt,
“Improving domain-specific language reuse with software product line
techniques,” IEEE Software, vol. 26, no. 4, pp. 47–53, 2009.

[18] S. Trujillo, A. Zubizarreta, X. Mendialdua, and J. de Sosa, “Feature-
oriented refinement of models, metamodels and model transformations,”
in FOSD, ser. ACM International Conference Proceeding Series, S. Apel,
W. R. Cook, K. Czarnecki, C. Kästner, N. Loughran, and O. Nierstrasz,
Eds. ACM, 2009, pp. 87–94.

[19] F. Lucas, F. Molina, and A. Toval, “A systematic review of UML
model consistency management,” in To appear Information and Software
Technology, 2009.

[20] M. Usman, A. Nadeem, T.-H. Kim, and E.-S. Cho, “A survey of
consistency checking techniques for uml models,” in Advanced Software
Engineering and Its Applications, 2008. ASEA 2008, 2008, pp. 57–62.
[Online]. Available: http://dx.doi.org/10.1109/ASEA.2008.40

[21] A. Egyed, “Instant consistency checking for the uml,” in ICSE, L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, 2006, pp.
381–390.

[22] ——, “Fixing inconsistencies in uml design models,” in ICSE ’07: Pro-
ceedings of the 29th International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 292–301.

[23] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed. Addison-Wesley Professional, 2008.

[24] OMG, “Meta Object Facility (MOF),” 2010, http://www.omg.org/mof.
[25] C. Jeanneret, “An analysis of model compostion approaches,” Master’s

thesis, Ecole Polytechnique Federal de Lausanne, 2008.
[26] F. Heidenreich, “Towards systematic ensuring well-formedness of soft-

ware product lines,” in FOSD, ser. ACM International Conference
Proceeding Series, S. Apel, W. R. Cook, K. Czarnecki, C. Kästner,
N. Loughran, and O. Nierstrasz, Eds. ACM, 2009, pp. 69–74.

[27] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook, “Safe composition
of product lines,” in GPCE, C. Consel and J. L. Lawall, Eds. ACM,
2007, pp. 95–104.

[28] R. E. Lopez-Herrejon and A. Egyed, “Detecting inconsistencies in multi-
view models with variability,” submitted for publication.

[29] S. Apel, C. Kästner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in ICSE. IEEE, 2009,
pp. 221–231.

[30] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa, “Model Compo-
sition and Feature Interaction Detection in Product Lines using Critical
Pair Analysis,” in MoDELS, 2007.

[31] R. E. Lopez-Herrejon and J. E. Rivera, “Realizing feature oriented
software development with equational logic: An exploratory study,” in
JISBD, A. Vallecillo and G. Sagardui, Eds., 2009, pp. 269–274.

[32] R. Balzer, “Tolerating inconsistency,” in ICSE, 1991, pp. 158–165.
[33] S. Fickas, M. Feather, and J. Kramer, “Living with inconsistency. icse

workshop, boston, usa,” 1997.



[34] D. Benavides, A. R. Cortés, D. S. Batory, and P. Heymans, “First
international workshop on analysis of software product lines (aspl’08),”
in SPLC. IEEE Computer Society, 2008, p. 385.

[35] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. R. Cortés,
“Automated diagnosis of product-line configuration errors in feature
models,” in SPLC. IEEE Computer Society, 2008, pp. 225–234.

[36] D. Batory, “Feature Models, Grammars, and Propositional Formulas,”
in Proceedings of the International Software Product Line Conference
(SPLC), 2005, pp. 7–20.

[37] Software Product Lines, 12th International Conference, SPLC 2008,
Limerick, Ireland, September 8-12, 2008, Proceedings. IEEE Computer
Society, 2008.

[38] S. Apel, W. R. Cook, K. Czarnecki, C. Kästner, N. Loughran, and
O. Nierstrasz, Eds., Proceedings of the First International Workshop
on Feature-Oriented Software Development, FOSD 2009, Denver, Col-
orado, USA, October 6, 2009, ser. ACM International Conference
Proceeding Series. ACM, 2009.


